Diffusion approximation of stochastic master equations with jumps
نویسندگان
چکیده
منابع مشابه
Diffusion Approximation of Stochastic Master Equations with Jumps
In the presence of quantum measurements with direct photon detection the evolution of open quantum systems is usually described by stochastic master equations with jumps. Heuristically, diffusion models can be obtained from these equations as approximation. A condition for a general diffusion approximation for jump master equations is presented. This approximation is rigorously proved by using ...
متن کاملApproximation of stochastic advection diffusion equations with finite difference scheme
In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...
متن کاملapproximation of stochastic advection diffusion equations with finite difference scheme
in this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. we applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. the main properties of deterministic difference schemes,...
متن کاملNumerical approximation of Backward Stochastic Differential Equations with Jumps
In this note we propose a numerical method to approximate the solution of a Backward Stochastic Differential Equations with Jumps (BSDEJ). This method is based on the construction of a discrete BSDEJ driven by a complete system of three orthogonal discrete time-space martingales, the first a random walk converging to a Brownian motion; the second, another random walk, independent of the first o...
متن کاملStochastic Differential Equations with Jumps
Gradient estimates and a Harnack inequality are established for the semigroup associated to stochastic differential equations driven by Poisson processes. As applications, estimates of the transition probability density, the compactness and ultraboundedness of the semigroup are studied in terms of the corresponding invariant measure.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2009
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.3263941